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In mathematics, most basic operations feel intuitive. Consider multipli-
cation or summation. We, without any mathematical thinking, only apply
the algorithms that will give us the answer. However, every mathematical
algorithm, actually, originate from some theorems.

In this part, before mathematical induction, it is important to know the
Successor Function and its applications, and furthermore, how it is related
to induction.

Let there be a function whose domain and codomain is N with the prop-
erty that every natural number has the image of the successor natural number
under this function.

Definition. The successor function is a mathematical function that takes
a natural number and returns the next natural number in the sequence. The
successor function is denoted by S.

In other words, the successor function is given by S : N → N such that
S(n) = n+ 1 for all n ∈ N.

Definition. An axiom is a statement that is assumed to be true without
proof and is used as a starting point to derive other statements (theorems)
using logical reasoning, i.e., a basic assumption in a formal system from which
all other results are deduced.

Pieno Axioms:

1. 0 ∈ N.

2. ∀n ∈ N, S(n) ∈ N.

3. ∀n ∈ N, S(n) ̸= 0.

4. ∀m,n ∈ N, S(m) = S(n) ⇒ m = n.
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5. If A ⊆ N, 0 ∈ A, and ∀n ∈ N(n ∈ A ⇒ S(n) ∈ A), then A = N.
For example, we can consider:

S(1) = 2, S(11) = 12, S(S(S(3))) = 6, S(S(S(S(S(S(21)))))) = 27.

Example: Prove that 2 + 2 = 4.

2 + 2 = S(S(0)) + S(S(0)) (1)

= S(S(S(0) + S(0))) (2)

= S(S(S(S(0)))) (3)

= 4. (4)

Induction Axiom:
For all A ⊆ N, if 1 ∈ A and, for all n ∈ N, if n ∈ A, then S(n) ∈ A, then

A = N.
This is rather a complex explanation, even though induction is expressed

as above formally. An informal and more student friendly explanation would
be as follows:

If the first element of the set of natural numbers is an element of some
set A, and furthermore, for each element n of A, if S(n) is also an element
of A, then the set A is equal to the set of natural numbers, i.e., N.

Theorem.(Principle of Mathematical Induction)
Let S ⊆ N. If
1. 1 ∈ S

2. If k ∈ S, then k + 1 ∈ S

then, S = N. Note that mathematical induction is also called the first prin-
ciple finite/mathematical induction.

Proofs consisting of induction are very entertaining and not difficult. We
will, now, consider the method to solve such problems.

Method:

1. Firstly, construct an induction basis and show that 1 is in the set in
the problem, i.e., satisfying the property given in the problem.

2. Secondly, construct an inductive step, assuming some element is in the
set, and then the image of the arbitrary element under the successor
function is also is in the set.

3. Conclude that the set is equal to N.
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Example(1) Prove that for all n ∈ N,

1 + 2 + 3 + 4 + · · ·+ n =
n(n+ 1)

2
.

Solution:
We will do a proof by first principle finite induction, i.e., mathematical

induction.
Induction Basis:
Observe that, for the base case, i.e., n = 1,

1 =
1(1 + 1)

2
=

2

2
= 1.

Therefore, for the base case, the statement is satisfied.
Inductive Step:
Assume, for a fixed but an arbitrary k ∈ N, that it is satisfied that

1 + 2 + 3 + 4 + · · ·+ k =
k(k + 1)

2
.

This assumption is called the Induction Hypothesis or Induction Assumption.
Now, we wish to show that the statement is also true for, then, k + 1.
By induction hypothesis, we have

1 + 2 + 3 + 4 + · · ·+ k + (k + 1) =
k(k + 1)

2
+ (k + 1)

=
k(k + 1) + 2(k + 1)

2

=
(k + 1) · (k + 2)

2

=
(k + 1) · (k + 1 + 1)

2

Therefore, by PMI(Principle of Mathematical Induction), for all n ∈ N,

1 + 2 + 3 + 4 + · · ·+ n =
n(n+ 1)

2
.
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Example(2) Prove that for all n ∈ N,

2n ≥ n+ 1.

Solution:
We will do a proof by first principle induction, i.e., mathematical induc-

tion.
Induction Basis:
Observe that, for the base case, i.e., n = 1, it is clear that

21 = 2 ≥ (1 + 1) = 2.

Therefore, for the base case, the statement is satisfied.
Inductive Step:
Assume, for a fixed but an arbitrary k ∈ N, that it is satisfied that

2k ≥ k + 1 (Induction Hypothesis/Assumption).

We wish to show that the statement is also true for k + 1.
Now, by induction hypothesis, we have

2k+1 ≥ 2k · 2
≥ 2(k + 1)

≥ 2k + 2 = k + (k + 2)

≥ k + 2

≥ (k + 1) + 1.

Therefore, by PMI(Principle of Mathematical Induction), for all n ∈ N,

2n ≥ n+ 1.
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We can generalize the result of mathematical induction to a second the-
orem as follows:

Theorem.(A Variation of Mathematical Induction)
Let S ⊆ N and n0 ∈ N. If

1. n0 ∈ S

2. If k ∈ S with k ≥ n0 and {n0, . . . , k} ⊆ S, then k + 1 ∈ S

then, S = N.
Example: Prove that for all integers n ≥ 5,

2n > n2.

Solution:
We will do a proof by induction.
Induction Basis:
Observe that, for the base case, i.e., n=5, we have

25 = 32 > 52 = 25.

So, for the base case, the statement is satisfied.
Inductive Step:
Assume, for a fixed but an arbitrary k ∈ {n ∈ N | n ≥ 5}, that it is

satisfied that

2k > k2 (Induction Hypothesis/Assumption).

We wish to show that the statement is also true for k + 1.
By induction hypothesis, we have

2k+1 = 2k · 2
> 2 · k2.

Here, we can observe that 2 · k2 > (k + 1)2, since 2 · k2 = k2 + k2 and
(k + 1)2 = k2 + 2k + 1 and k2 > 2k + 1, as k2 − 2k = k(k − 2) > 1, since
k ≥ 5 and therefore k, (k − 2) > 1.

It follows that
2k+1 > 2 · k2 > (k + 1)2.

Hence, by PMI, for all integers n ≥ 5,

2n > n2.
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