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Well Ordering Principle: Every nonempty subset of N has a least
element, i.e., there exists a ∈ S such that x ≥ a for all x ∈ S.

This principle may seem a little obvious. The conditions, however, are
considerable. Notice that, firstly, we need a nonempty set. The reason is
trivial to comprehend, as the empty set has no elements and therefore it
cannot have a least element. Furthermore, the set must be a subset of N.

We can consider some sets and determine whether they satisfy the Well
Ordering Principle, i.e., they are well ordered.

Example: Consider the set

S = {x ∈ N | x > 4}.

Here, from the set notation, we conclude that S is a subset of N. Also,
we can show that the set is nonempty, as 10 ∈ N and 10 > 4 and therefore
10 ∈ S. Hence, the set S satisfies the conditions of Well Ordering Principle
and therefore S is well ordered. Moreover, the least element of S is 5. Since
5 ∈ S and for all x ∈ S, x ≥ 5.

Example: Consider the set

{. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }.

We can easily see that, letting S = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }, S is
not a subset of N. We can show this by the fact that −3 ∈ S and −3 /∈ N
and therefore the exists some x ∈ S such that x /∈ N, which implies that S
is not a subset of N, by definition of subsets. However, we cannot deduce
that S is not well ordered just because S does not satisfy a condition of
Well Ordering Principle. This is a common mistake in mathematical rea-
soning. Well Ordering Principle says that if a set satisfies some conditions,
then it is guaranteed that it has a least element and thus it is a well or-
dered set, but it does not assert that if a set does not satisfy at least one
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condition, then it cannot be well ordered. Here, the reader may say ”But
{. . . ,−3,−2,−1, 0, 1, 2, 3, . . . } does not seem well ordered to me.” and one
could be right. In fact, {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . } is not well ordered.
Then how can we prove it?

Well Ordering Proofs:
Well Ordering proofs mainly consist of two types of proofs. In the first

one, we show that a set is well ordered by showing the corresponding set
satisfies the conditions of Well Ordering Principle. In the latter one, we
show that the set is not well ordered by a contradiction, i.e., we first assume
that the set is well ordered, and then obtain a contradiction from such an
assumption. Example: Show that

S = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }
is not well ordered.

Solution:
Assume towards a contradiction that S is a well ordered set. Then S has

a least element. Let x be the least element of S. Then, we get x ∈ S and for
all a ∈ S, a ≥ x. Here, it is clear that S = Z and since x ∈ S, x− 1 ∈ S, as
both x and x− 1 are integers. But then, x− 1 < x, which is a contradiction
to the fact that ”for all a ∈ S, a ≥ x”. Therefore, by proof by contradiction,
S is not well ordered.
Definition. Theorem is a statement which is true and can be proven.

Theorem. If a, b ∈ N, then there exists n ∈ N such that na ≥ b.

This theorem is also called the Archimedean Property of Integers.

Proof. Suppose towards a contradiction that the theorem is false and there-
fore there exist some natural numbers a, b such that na < b for all n ∈ N.

Let S be the set given by

S = {b− na | n ∈ N, b− na > 0}.
Observe that S is a subset of N, b−na > 0, since b, n, a ∈ N and so b−na ∈ N.
Furthermore, assuming that n = 1 ∈ N and b > a and so b− a > 0, we have
b − a ∈ S. Therefore, S is nonempty. Hence, according to Well Ordering
Principle, S has a least element. Let x be the least element of S. Hence, by
definition of S, x = b− ña for some arbitrary ñ ∈ N. But then, b− (ñ+1)a is
also an element of S. It follows that b− (ñ+1)a < b− ña, which contradicts
the fact that b− ña is the least element of S.
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